
Deep Learning for Data Science
DS 542

Lecture 25
Reinforcement Learning

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com


Last Lecture of This Course

Previously covered (among others)

● Supervised learning
● Neural Networks
● Convolutional Networks
● Transformers
● Generative Models

Today

● Reinforcement learning



Reinforcement Learning (RL)

An intelligent agent uses reinforcement learning to maximize a sequence of 
rewards arising from actions over time.



Which of these 
moves were good or 
bad?
PGN

1. e4 c5 2. Nc3 Nc6 3. Bc4 e6 4. Nf3 Nf6 5. 
O-O d5 6. exd5 exd5 7. Bb5 Bd7 8. Re1+ 
Be7 9. Bxc6 Bxc6 10. Ne5 Qc7 11. d4 
O-O 12. Nxc6 bxc6 13. Bg5 h6 14. Bxf6 
Bxf6 15. dxc5 Rad8 16. Qh5 Qa5 17. a3 
Bxc3 18. bxc3 Qxc3 19. Qe5 Qxc5 20. c3 
Qd6 21. Qxd6 Rxd6 22. Re7 a6 23. Rd1 
Rb8 24. h4 Rb3 25. c4 Rxa3 26. c5 Re6 
27. Rxe6 fxe6 28. Rb1 Kf7 29. Rb6 Ke7 
30. Rxc6 Rc3 31. Rxa6 Rxc5 32. Ra7+ 
Kf6 33. g4 d4 34. Kf1 e5 35. Ke2 g5 36. 
h5 e4 37. f3 e3 38. Ra6+ Ke5 39. Rxh6 
Rc2+ 40. Kd3 e2 41. Rh8 e1=N#

Source: 
https://www.reddit.com/r/chess/comments/25y7o5
/cool_underpromotion_checkmate_in_a_game_i_j
ust/

Only 
defined 
reward.

https://www.reddit.com/r/chess/comments/25y7o5/cool_underpromotion_checkmate_in_a_game_i_just/
https://www.reddit.com/r/chess/comments/25y7o5/cool_underpromotion_checkmate_in_a_game_i_just/
https://www.reddit.com/r/chess/comments/25y7o5/cool_underpromotion_checkmate_in_a_game_i_just/


Re: name origin

Curiously, this area is
named after the early
solving tactics, not the
problem definition…

Image source: https://en.wikipedia.org/wiki/Operant_conditioning

https://en.wikipedia.org/wiki/Operant_conditioning


Why is Reinforcement Learning Hard?

● Rewards due to an action may be delayed arbitrarily long.
● Distributions of rewards may change due to agents changing their behavior.
● Probabilistic scenarios make systematic coverage more difficult.
● Opponents (e.g. in 2 player games) actively try to minimize agent rewards.



DS 543 Introduction 
to Reinforcement 
Learning

● We actually have a whole 
course about reinforcement 
learning.

● Today will focus on the 
learning-specific challenges of 
reinforcement learning.

● And connect various techniques 
used in this course to the RL 
state of the art.

Will give a brief overview, but this will 
be very light compared to the real 
course.



Two Targets for Today

● AlphaGo + successors
○ State of the art in board game playing

● Reinforcement Learning with Human Feedback
○ Final tuning stage applied to ChatGPT



Example: 
Tic-Tac-Toe

● What move to win?

Image source: 
https://github.com/LewisMatos/MiniMa
xTicTacToe

https://github.com/LewisMatos/MiniMaxTicTacToe
https://github.com/LewisMatos/MiniMaxTicTacToe


Example: Penguin 
Game

● How should the penguin move 
to get the fish?

● Slippery ice makes moves 
imprecise.



Example: Data 
Center Cooling
“Despite the impressive advances in 
reinforcement learning (RL) algorithms, their 
deployment to real-world physical systems is 
often complicated by unexpected events and 
the potential for expensive failures. In this 
paper we describe an application of RL “in the 
wild” to the task of regulating temperatures 
and airflow inside a large-scale data center 
(DC). Adopting a data-driven model-based 
approach, we demonstrate that an RL agent 
is able to effectively and safely regulate 
conditions inside a server floor in just a few 
hours, while improving operational efficiency 
relative to existing controllers.”

“Data Center Cooling using Model-predictive 
Control” (2018)

https://research.google/pubs/data-center-cooling-using-model-predictive-control/
https://research.google/pubs/data-center-cooling-using-model-predictive-control/


Example: Gran 
Turismo Sophie

● I saw a talk about this last 
week.

● Racing fast is the easy part.
○ Well-behaved driving is 

much more difficult.
○ Do not ride the walls.
○ Stop crashing to knock 

other cars off the course.

https://www.gran-turismo.com/jp/gran-t
urismo-sophy/

https://www.gran-turismo.com/jp/gran-turismo-sophy/
https://www.gran-turismo.com/jp/gran-turismo-sophy/


What is Reinforcement Learning?

● Reinforcement learning covers learning problems where actions are chosen 
and rewards are received over time.

● The goal of reinforcement learning is to maximize the sum of those rewards.



Horizon Effect

● Positive rewards may be delayed by many steps.
○ Horizon problem - brute force search of a finite number of steps may not see the reward.
○ Some problems may even put negative rewards on the path to the real reward.

■ Often “toy” problems, but analogous to investments with long term payoff.



Partial Observability

● Real world problems often have unknown state information.
○ Current state may only be partially observed.
○ Problem rules may not be known.
○ Simultaneous actions are unknown.



Unknown Dynamics

● In many real-world problems, the true rules are unknown.
○ We may have approximate versions of the rules.
○ If we can safely attempt the problem, we can gather data to infer the rules.
○ Simulators based on approximate rules will let us trade compute power for real world costs.

● Problems with known dynamics tend to be much easier.
○ Board games in particular.



Side Note: Solving Problems

● Reinforcement learning is more concerned with acting effectively than perfect 
solutions.

○ Perfect solutions require actual knowledge of the real dynamics.
○ Errors modeling the dynamics tend to blow up.
○ Solving tactics tend to be pretty different and more methodical.
○ But, given enough resources, reinforcement learning methods can get perfect solutions too.



Building up Complexity

● Markov processes
○ State → probabilistic transition
○ Just a Markov chain.

● Markov decision processes (MDPs)
○ State + action → probabilistic transition
○ Puzzles and full information games are deterministic special cases.

● Partially observable Markov decision processes (POMDPs)
○ Like MDPs, but only partial state known.

Harder RL here

Focus today

Easy mode



Markov Processes



Markov Processes

● A finite Markov process with n states is easy to learn.
○ Run a lot of simulations and track stats…

● Learn transition probabilities
○ n x n transition probabilities.

● Or learn expected total reward from a particular state
○ n values to learn.

● These processes can run infinitely long, so usually adding a discount factor to 
rewards.

○ Compare finite discounted rewards instead of everything infinite…

Just stats, no deep 
learning necessary.



Discounted Rewards 𝛾 is the discounting factor.



Markov Processes

● Do not model how we want our agents to act.
● More a model of other things happening to our agent.

○ Agent does nothing, or is just swept along.
○ Why do these things keep happening to me?



Markov Decision 
Processes

● Add agent actions to the model.
○ Not necessarily 

deterministic.
○ This model has the 

action choice work 50% 
of the time.



Markov Decision Processes

● Add actions to Markov processes
● Rewards and next state depend on (state, action) instead of just state.
● Two new potential functions to model

○ (state, action) → expected reward (given current or optimal action choices)
○ (state, action) → distribution of rewards and next states

Why is this qualification needed?

model-based reinforcement learning



Policies

A policy is a function taking in a state and returning an action to take.

● Move selection in board games
● May be probabilistic or deterministic.
● Usually represented with variable π, maybe with subscripts to distinguish…

Mechanically, policy output is a list of probabilities of each action…

● Just like classification outputs.



Given a policy π, we can quantify

● Value function:
○ The total expected rewards of state s playing with policy π.

● Action function:
○ The total expected rewards of state s picking action a and then playing with policy π.



Why Probabilistic Policies? 

● To facilitate learning.
○ Can run gradient descent with probabilistic policies.

● Some problems require probabilistic policies.
○ Easy example: Rock / Paper / Scissors

https://hackaday.com/2015/10/06/robot-cheats-at-rock-paper-scissors/

https://hackaday.com/2015/10/06/robot-cheats-at-rock-paper-scissors/


Why Not Probabilistic Policies?

● Some problems have clear best answers.
○ Pick any of them deterministically.
○ Full information and no simultaneous moves.

■ Puzzles
■ Two player games with alternating turns.

● With these problems, probabilities usually represent uncertainty.
○ Not sure about the right action.
○ Or rarely, choice between actions with non-zero probabilities does not matter.



Is the Perfect Policy Probabilistic or Deterministic?

Probabilistic

● Rock-paper-scissors
● Poker
● Car racing

● Navigation (congestion aware)

Deterministic

● Chess
● Go
● Data center cooling?

● Navigation (single car)



Bellman Equation

This version omits optimization of π.



Q-Learning

● Just saw the q-function in the Bellman equation as value of a (state, action) 
choice.

● More properly used when the policy π is optimal.
○ The q-learning process actually optimizes the policy to be optimal.

“Learning from Delayed Rewards” (1989)

https://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf


Comparison of Value vs Policy vs Q Functions

● Policy picks actions.
● Value function estimates rewards from state given policy.
● Q function estimates rewards from state and action given policy.



Side Note: Tabular Reinforcement Learning

For small problems, such as Tic-Tac-Toe or the Penguin game, there are few 
enough states that the value and q functions can be feasibly stored in a table.

● If the tabular representation is feasible, then learning tends to be simplified.
○ If dynamics are known, usually solving instead of learning.
○ Iterative methods still converge with enough samples.

● This tabular representation is essentially the infinite resource ideal.
○ May see table-oriented notation if you read more about this.
○ Reinforcement learning uses function approximation when this ideal is not practical.
○ This is where deep learning comes in.



Looking at the RL Process



Generic RL Approach

● Learn approximate behavior over many instances.
○ Simulations preferred if possible.
○ Optimize based on learned (modeled) best behavior

● Very different from classical AI approach
○ Minimax trees
○ Alpha beta search
○ Classical AI approach usually assumes problem can be simulated faithfully.

● Hybrid approaches are possible
○ Monte Carlo Tree Search (will cover today)
○ State of the art game play works this way
○ AlphaGo / AlphaZero / Leela Chess Zero
○ StockFish (recent versions)

Current Chess State of the Art

How I learned AI



AlphaGo
● Game of Go

○ Ancient game
○ Played on 19x19 board
○ Generally considered 

one of the hardest 
games that we play

○ Was notoriously difficult 
for computers to play 
above amateur level.

● Needs intelligence, cannot brute 
force like chess?

● Many hard subproblems

https://deepmind.google/research/brea
kthroughs/alphago/

https://deepmind.google/research/breakthroughs/alphago/
https://deepmind.google/research/breakthroughs/alphago/


Supervised learning of policy networks (imitation learning)

Phase 1:

● Collect a database of expert-level go games.
● Train a policy network to pick the same moves as the experts.
● This had been done before, but only with linear policies or shallow neural 

networks…

“Mastering the game of Go with deep neural networks and tree search” (2016)

https://www.nature.com/articles/nature16961


Supervised learning of policy networks (imitation learning)

TLDR: a deep convolutional network treating move selection as classification.

“Mastering the game of Go with deep neural networks and tree search” (2016)

https://www.nature.com/articles/nature16961


Supervised learning of policy networks (imitation learning)

● Downloaded 30 million positions from KGS Go Server.
● 13 layer policy network
● Predicted expert moves 55-57% accurately (depending on features allowed)

○ Previous best ~44% accurate
● Position evaluation in 3ms

○ Also trained a simplified network running in 2µs but only 24% accurate

“Mastering the game of Go with deep neural networks and tree search” (2016)

https://www.nature.com/articles/nature16961


Monte Carlo Tree Search (MCTS)

TLDR: play a lot of games (in your head) remembering which moves worked out.

“Mastering the game of Go with deep neural networks and tree search” (2016)

https://www.nature.com/articles/nature16961


Reinforcement learning of policy networks

● Copy supervised policy from imitation learning to initialize new rollout policy.
● Run Monte Carlo Tree Search to play games between rollout policy and 

previous snapshot.
○ Previous snapshot is chosen randomly to overfitting on particular snapshot’s weaknesses.
○ No rewards until the end of the game.
○ Final reward is ±1 depending on result of the game.
○ After each game, update the current rollout policy based on game result.

■ Use policy to calculate move probabilities of the game played.
■ Calculate gradients of picking those moves.
■ One step of gradient descent with direction based on final reward.

“Mastering the game of Go with deep neural networks and tree search” (2016)

https://www.nature.com/articles/nature16961


Policy Improvement with Monte Carlo Tree Search

● If MCTS using a policy shows the policy made mistakes, update the policy.
○ If policy did not pick winning move, but MCTS found a win, update the policy.
○ If policy picked an avoidable losing move and MCTS avoided the loss, update the policy.

● Using MCTS forces policy to align with best rewards.
○ This can work even starting from a random policy.

● Even if one side always wins with the current policy, the losing side will 
explore all their alternative moves looking for a way out.



Reinforcement learning of value networks

● Policies help pick moves, but do not say whether you will win or not.
● Also would like a value function (network) to directly estimate value of a 

position or move.
○ If you have a value function, you can also pick moves by applying it to all possible moves.
○ This is faster than simulating whole games.

● Treat this as another supervised learning problem.
○ Play games using the current policy until the end./
○ Pick one move during the game and train value network with game result as target.
○ Only pick one move per game to avoid overfitting - many similar positions in a game.

“Mastering the game of Go with deep neural networks and tree search” (2016)

https://www.nature.com/articles/nature16961


Playing with AlphaGo

● Build an MCTS game tree as follows.
○ Repeatedly simulate game rollouts from the root expanding the tree one node at a time.
○ MCTS leaf evaluations are weighted average of value network and rollout result.
○ Repeated rollouts through a node update that node’s stats.
○ Move selection mixes picking for diversity early on and getting more data for winning moves.

● Interesting notes
○ The supervised policy gave better MCTS trees, apparently due to diversity.
○ The rollout policy gave a better value function since it was tuned for better one move choices.
○ Ablation of other choices on next slide.



Evaluation of AlphaGo

“Mastering the game of Go with deep neural networks and tree search” (2016)

https://www.nature.com/articles/nature16961


Evaluation of AlphaGo

● AlphaGo vs Fan Hui (2015)
○ European Go champion
○ Won 5-0

● AlphaGo vs Lee Sedol (2016):
○ Won 4-1 (technically 3-0 but they continued)
○ AlphaGo play was shocking to spectators.
○ Lee won the 4th game by staying up working out an anti-computer strategy with other experts.

“Mastering the game of Go with deep neural networks and tree search” (2016)

https://www.nature.com/articles/nature16961


Later Developments

● AlphaGo Zero:
○ Same design, but skip imitation learning from expert games.

● AlphaZero:
○ Simplify design removing go-specific features (particularly augmentations)
○ Apply common design to chess and shogi too.
○ Claimed to crush all the state of the art programs.

● MuZero:
○ Further simplifications, do not even wire up game rules!!!



Later Developments

● Leela Chess Zero (lc0)
○ Open source re-implementation of AlphaZero
○ https://lczero.org/

● StockFish
○ Relatively old open source chess program that was long time state of the art.
○ Based on really efficient search and a good evaluation function.
○ Integrated “Efficiently Updatable Neural Networks” (NNUE) to replace previous bespoke 

evaluation function.
○ Gained >80 ELO “overnight”
○ https://stockfishchess.org/blog/2020/introducing-nnue-evaluation/

https://lczero.org/
https://stockfishchess.org/blog/2020/introducing-nnue-evaluation/


Large Language 
Model Tuning

● Large language models existed 
for a while before ChatGPT.

● GPT 3.0 was available to the 
public via API.

● Why did ChatGPT make a 
bigger splash?

Image source: 
https://x.com/anthrupad/status/162234
9563922362368 

GPT 3.0/3.5

ChatGPT



Training an LLM to Take Instructions

https://openai.com/index/instruction-following/

https://openai.com/index/instruction-following/


● Download all the text on the internet.
○ Train your favorite decoder-only model on that regardless of good or bad.
○ But feel to upweight good stuff if you can tell.
○ Use Wikipedia twice, skip 4chan.

● Nowadays, most LLM providers are training on a significant fraction of publicly 
accessible text on the Internet.

○ Some papers show they are getting more selective about what is included in the training data.
○ Anecdotally, also using synthetic data but seeing mixed results. (Also mode collapse risk.)

● The messy problem
○ There is a lot of toxic and made up content on the Internet.

https://openai.com/index/instruction-following/

Pre-Training a Large Language Model

https://openai.com/index/instruction-following/


● Collect many examples of good 
responses.

● Directly tune language model 
weights to increase probabilities 
of good responses.

● This process tends to make the 
model responses much more 
polite and helpful.

https://openai.com/index/instruction-foll
owing/

Supervising Your 
Language Model

https://openai.com/index/instruction-following/
https://openai.com/index/instruction-following/


Language Models - 
Collecting Human 
Preferences

● Build another dataset of model 
outputs for the same prompts.

● Collect labeler rankings of those 
model outputs.

● Build a reward model to rank 
responses.

○ The reward model built 
off the pre-trained model.

○ Key idea: the reward 
model generalizes the 
labeler preferences.

https://openai.com/index/instruction-foll
owing/

https://openai.com/index/instruction-following/
https://openai.com/index/instruction-following/


Reinforcement 
Learning from 
Human Preferences

● Build a new policy to choose 
actions (tokens) and optimize it 
to maximize the previous 
reward model.

○ This policy is also 
initialized with the 
pre-trained model.

○ Did not share since hard 
to balance small amount 
of labeler data vs lots of 
reward samples.

https://openai.com/index/instruction-foll
owing/

https://openai.com/index/instruction-following/
https://openai.com/index/instruction-following/


LLM Evaluations
“Our labelers prefer outputs from our 
1.3B InstructGPT model over outputs 
from a 175B GPT-3 model, despite 
having more than 100x fewer 
parameters. At the same time, we 
show that we don’t have to 
compromise on GPT-3’s capabilities, 
as measured by our model’s 
performance on academic NLP 
evaluations.”

https://openai.com/index/instruction-foll
owing/

https://openai.com/index/instruction-following/
https://openai.com/index/instruction-following/


LLM Evaluations

https://openai.com/index/i
nstruction-following/

https://openai.com/index/instruction-following/
https://openai.com/index/instruction-following/


Neat Things That Were Skipped Today

● https://openai.com/index/solving-rubiks-cube/
● “Playing Atari with Deep Reinforcement Learning”
● “Simple random search of static linear policies is competitive for 

reinforcement learning” by Mania et al (2018)
● https://ai.sony/publications/A-Super-human-Vision-based-Reinforcement-Lear

ning-Agent-for-Autonomous-Racing-in-Gran-Turismo/

https://openai.com/index/solving-rubiks-cube/
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://ai.sony/publications/A-Super-human-Vision-based-Reinforcement-Learning-Agent-for-Autonomous-Racing-in-Gran-Turismo/
https://ai.sony/publications/A-Super-human-Vision-based-Reinforcement-Learning-Agent-for-Autonomous-Racing-in-Gran-Turismo/


Project Presentation Schedule

Wednesday 12/4

● Gukai Chen
● Houssain Ababou
● Yuchen Huang
● Zachary Meurer
● Akshara Ramprasad
● Chuqiao Feng, Assylnur Lesken, Jingyuan Liu
● Apoorva Gupta
● Kaya Daylor

Monday 12/9

● Hemangi Suthar
● Yangu Chen
● Fengyuan Shen, Jinhu Sun
● Qiuyi Feng
● Aashrey Jain
● Daniel Foley
● Matthew Maslow, Jonathan Neimann
● Can Erozer, Ozgur Sen



Feedback?


